

1

IS JOB ROTATION A RISK FACTOR FOR CARPAL TUNNEL SYNDROME OR NOT ?

Y. Roquelaure¹, C. Ha², A Petit¹, J Bodin¹, N . Vezina³, A. Descatha⁴, R. Brunet¹

¹LUNAM University, LEEST, Angers, France; ²Department of Occupational Health, French Institute for Public Health Surveillance, Saint-Maurice, France; ³CINBIOSE, UQAM, Montreal; ⁴Inserm U1018, Villejuif, France

Website: http://www.univ-angers.fr/leest/

8th International Conference on Prevention of Work-related Musculoskeletal Disorders PREMUS 2013 - BUSAN 8-11 July 2013

Introduction: Carpal tunnel syndrome

Multifactorial risk model for CTS

- Personal risk factors
 - Often not modifiable: age, female gender,
- Work-related risk factors:
 - Could be modified by preventive interventions

• Biomechanical risk factors (Palmer, 2007; VanRijn, 2009; Barcenilla, 2011)

- Repetitive wrist movements
- Forceful manual exertion
- Repeated bending / twisting of the wrist
- Sustained exposure to hand-arm vibration
- Psychosocial factors at work:
 - Conflicting epidemiological data (VanRijn, 2009)

Factors related to the work organization

- Few epidemiological data
- Structural organizational level aspects of the work process
- Indirect risk factor via the nature of the work activities, the duration of mechanical exposure, and psychosocial factors

Combination +++

Aim of the study

•To assess the personal, biomechanical, psychosocial and organizational risk factors for carpal tunnel syndrome (CTS)

• in workers exposed to various levels of work-related constraints,

• by using the data of the surveillance program for MSDs in the French Pays de la Loire region

Materials and Methods

Cross-sectional study :

- **3,710 workers** (2,161 men ; 1,549 women),
- Randomly included by 83 occupational physicians in 2002-2005,
- Representative of the regional workforce according to age, gender, activity sectors and occupational categories.
- Symptomatic CTS (Criteria for the evaluation of the work-relatedness of MSDs: Sluiter et al, 2001)
 - intermittent paresthesias or pain in (at least) two of the first three digits;
 The symptoms may be present at night, as well)
 - symptoms present during the medical examination (or during at least 4 days the week preceding the medical examination)

Self administered questionnaire:

Medical history, personal factors and work-related risk factors

Statistical analysis

- Logistic regression models for each gender.
- Sensitivity analysis: only *clinically-diagnosed CTS (symptomatic CTS WITH at least one positive physical examination sign)*

Multivariate statistical model of CTS

• 156 cases of CTS diagnosed (89 women and 67 men)

	``		/				
		Men (n=59)			Women (n=82)		
	n/N	OR (95% CI)	Р	n/N	OR (95% CI)	Р	
Age (1-year increment)		1.05 [1.02–1.08]	***		1.07 [1.04–1.10]	***	
Body mass index (1 kg/m² increment)		1.05 [1.02–1.17]	**		1.04 [0.99–1.09]		
Work pace / quantified target	41/1,054	1.9 [1.1-3.5]	*				
Job/task rotation (≥1 job rotation per week)	36/768	2.5 [1.5-4.2]	***				
Work with temporary workers				39/444	2.0 [1.2-3.3]	***	
<10 min break possible / hour (in case of highly repetitive task)	6/87	2.0 [0.8-5.1]		14/106	1.7 [0.9-3.4]		
Wrist bending (≥2 h/day) and high physical demand (ref = 0)							
 1 factor 2 factors	24/626 15/260	1.6 [0.9-3.1] 2.2 [1.0-4.7]		33/442 17/174	1.6] 1.0-2.8] 1.6 [0.8-3.1]		
Vibrating hand tools (≥2 h/day)	17/364	1.5 [0-8-2.9]		10/61	2.4 [1.1-5.4]	*	
Low skill discretion	38/972	1.8 [1.0-3.1]	*				
High psychological demand				54/728	1.9 [1.2–3.1]	**	

In analyses only restricted to clinically-diagnosed CTS : job/task rotation : OR=2.9 [1.5-5.5]

Discussion

 This study showed that several factors related to the work organization and psychosocial constraints were associated with CTS, after adjustment for personal and biomechanical risk factors.

• Three factors were related to the work organization:

- High paced work dependent on strictly quantified targets:
 - Major determinant of repetitive movements
- Work with temporary workers for women:
 - Increased work load of experienced women because of the working time spent to train less qualified temporary colleagues
- Contrary to our expectations, job rotation between several workstations on various days of the week (≥1/week) was highly associated with CTS among men.

Discussion: job rotation as a preventive mesure ?

- Job rotation between several workstations often proposed to:
 - decrease the mechanical load on the hand/wrist region by varying the biomechanical stresses,
 - broadened the area of application of the mechanical load
 - increase the variability of hand movements (only in case of job enlargement) (Hagberg *et al*, 1995; Wells, 2010).
- However, the epidemiological data supporting the preventive impact of job rotation on CTS are scarce and conflicting:

– Protective effects :

- Roquelaure et al (1997): case control study of industrial workers,
- Maghsoudipour et al. (2008): study in automotive workers (univariate analysis)
- Wand et al (2007): neck and shoulder disorders in the garment industry
- Negative effects:
 - Kuijer *et al* (2005): job-rotation may reduce the need for recovery and thus increase the risk of cumulative trauma of soft tissue in refuse collector workers.

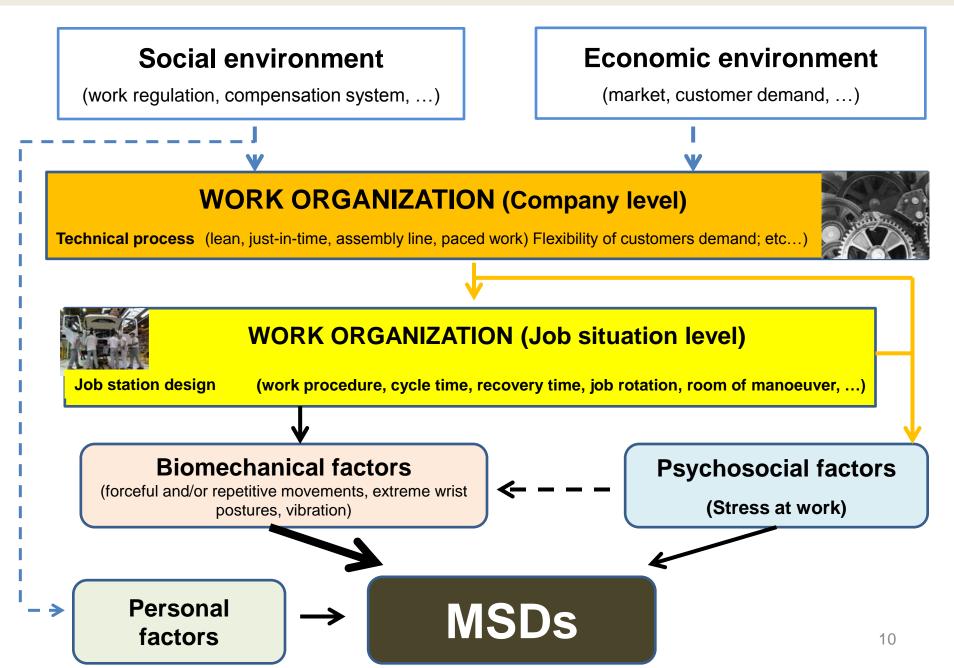
Discussion: job rotation as a risk factor for CTS ?

• Job rotation can also have adverse effects:

- increases the task complexity and the number of actions to be learn,
- requires longer training periods to develop efficient skills and gestures.

• In lack of adequate planning and training periods:

- workers can be insufficiently skilled to cope with all dimensions of the tasks
- leading them to adopt unsafe working techniques, that may increase the mechanical exposure.
- Job rotation without adequate training may therefore be less effective than expected to reduce the risk of CTS;


• Our results should be interpreted with caution :

- Cross sectional design of the study
- No information on the existence of training periods before job rotation.
- We cannot exclude that some workers suffering from CTS before the cross sectional study may have been allocated to enlarged jobs.

Conclusion

- This study showed that several factors related to the work organization were associated with increased risk of CTS
- Job rotation may be less effective than expected to reduce the risk of CTS
- Increasing understanding of the impact of work organization on the risk of CTS is a major issue
- In the context of globalization of the economy, rationalization of production and flexibility of employment leading to "work intensification".

Work organization and CTS: conceptual ergonomic model

Thank you for your attention