Return to work of 87 severely impaired low back pain patients two years after a program of intensive functional restoration

L. Bontoux a,*,b, V. Dubus a,b, Y. Roquelaure b, D. Colin e, L. Brami c, G. Roche a,b, S. Fanello f,b, D. Penneau-Fontbonne d, I. Richard a,b

a Services de médecine physique et de réadaptation, CRRRF-CHU, rue des Capucins, 49103 Angers cedex 02, France
b EA 4336, IFR 132, laboratoire d’ergonomie et d’épidémiologie en santé au travail (LEEST), université d’Angers, rue Haute de Reculée, 49100 Angers, France
c Action régionale d’amélioration des conditions de travail, 49000 Angers, France
d Consultation de pathologies professionnelles, CHU d’Angers, 49033 Angers, France
e Centre hospitalier spécialisé de l’Arche, Saint-Saturnin, 72650 La Millesse, France
f Service de santé publique, faculté de médecine d’Angers, rue Haute de Reculée, 49100 Angers, France

Received 12 December 2008; accepted 15 December 2008

Abstract

Return to work is the main long-term objective of rehabilitation programs for patients with chronic low back pain (LBP).

Objectives. – Evaluation of work status and number of sick leaves in 87 severely impaired LBP patients 2 years after a functional restoration program.

Patients and methods. – Open prospective study. Population: 87 chronic LBP patients. Intervention: multidisciplinary functional restoration program. Ergonomic advice on the workplace was performed for 53 patients. Outcome: work status and number of sick leaves due to LBP.

Results. – The characteristics of the 26 patients lost to follow-up did not differ significantly from the rest of the population before the program. In the 61 remaining patients, 48 (78%) were at work at 2 years, 43 full-time and 22 at the same job. Nineteen worked in a different environment. Sick leaves were reduced by 60% compared to the 2 years prior to the program: 128 days (± 200 days) versus 329 days (± 179 days); p < 0.005.

Conclusion. – Sick leaves remained significantly reduced and the number of workers who were at work significantly increased at 2 years after an intensive program.

Résumé

Return to work is the main long-term objective of rehabilitation programs for patients with chronic low back pain (LBP).

Introduction. – Le maintien dans l’emploi à long terme est l’objectif principal des programmes de reconditionnement de patients lombalgiques chroniques.

Objectifs. – Évaluation de la présence au travail et de la diminution des durées d’arrêt de travail de 87 salariés lombalgiques deux ans après un programme de reconditionnement à l’effort.

Patients et méthodes. – Étude prospective ouverte menée sur 87 lombalgiques chroniques, issus de trois départements. Tous ont été inclus dans un programme multidisciplinaire de reconditionnement à l’effort et 53 ont bénéficié d’une action ergonomique en entreprise. L’évaluation porte sur la présence au travail à deux ans et le nombre de jours d’arrêt de travail en rapport avec une lombalgie.

Résultats. – Vingt-six patients sont sortis de l’étude pour de multiples raisons. Leurs caractéristiques initiales ne sont pas significativement différentes du reste de la population. Sur les 61 cas analysables, 48 (78 %) sont au travail, dont 43 à plein temps et 22 au même poste. Dix-neuf travaillent sur un autre poste ou ont changé de métier. La durée moyenne des arrêts de travail est diminuée de 60 % par rapport à ce qu’elle était...
1. English version

1.1. Introduction

Return to work of low back pain (LBP) patients remains a public health issue as recently stated by the federal centre for healthcare expertise, KCE [44].

Chronic LBP is a common condition: a survey conducted in the area “Pays-de-la-Loire” [49] showed that 58% of workers had suffered from LBP in the past year, and that 7% reported that pain was present every day. A recent report by Leclerc et al. highlights the social consequences of LBP [34]. The main issue is the occurrence of major disability in a limited number of patients and this was already pointed by Spitzer et al. more than 20 years ago [51].

Several different approaches have been developed during the past 2 decades. The risk factors for chronicity have been extensively studied and therapeutic strategies have been developed. Psychosocial characteristics, among which the fears and beliefs concerning movement, have been shown to play a major role. Counselling strategies have been increasingly focused on these elements. LBP programs have been developed, based on the concept of physical and psychosocial deconditioning. They include multidisciplinary interventions with the objective of resuming activities and returning to work. Short-term outcomes such as improvement of physical performance are very significant [4,6,17,19,23,24,26,28,37,46]. Evaluation of such programs includes the cost–effectiveness evaluation and requires long-term follow-up and data on the long-term work status. Such data are quite scarce and most of the available studies are limited to one-year follow-up [2,20,26,29,32,40,52].

Since 2000, several cohorts of LBP patients have been studied [6,26]. Results at 1 year of a series of 87 patients showed a 60% decrease of sick leaves and 72% of the patients had returned to work [6]. The objective of the present study is to report the results at 1 years and define the main factors predictive of return to work.

1.2. Patients and methods

This is a prospective open study. The inclusion criteria were:

- age between 18 and 53;
- presence of chronic LBP or lumbo-radiculalg according to the criteria of the French health evaluation agency [1];
- presently employed with a permanent contract;
- on sick leave or having been on sick leave for over 6 months in the past 2 years.

Exclusion criteria were secondary LBP, osteoarthritis or neurological disease precluding physical exercise, cardiovascular disease (diagnosed after cycloergometer stress tests) and psychiatric disorders incompatible with the participation in a group program.

1.3. Intervention

The intervention includes participation in a functional restoration program (FRP) and ergonomic intervention on the workplace. The FRP program was standardised and performed in two rehabilitation centres. It has been described in detail in the study reporting results at 1 year [6]. This program includes physiotherapy interventions, occupational therapy interventions and psychological counselling. The medical supervisor is a physiatrist. Patients participate as in- or outpatients 6 hours per day, 5 days a week during 5 weeks.

The ergonomic intervention is provided on the workplace by a regional agency devoted to the improvement of work conditions (ARACT), according to the standards defined for “short interventions” by the national agency (ANACT). This intervention is only possible after agreement of the company and was performed for 53 patients. It consists in:

- a diagnosis of the work conditions, conducted with the different actors;
- the definition of an action program;
- feedback for the company.

This intervention is tailored to the specific context of the company and cannot be completely standardised.

1.4. Evaluation

The evaluation is similar to that conducted at 1 year [6]. Finger to floor distance was used to evaluate flexibility. The strength of the trunk flexors and extensors was evaluated by the Ito et al. [25] and Sorensen [5,12] tests. Lifting ability was evaluated by the “Progressive Isoinertial Lifting Evaluation” (PILE) test [42]. Quality of Life was evaluated by the self-administered Dallas questionnaire [40]. Disability was evaluated by the Quebec self-administered questionnaire [31]. The Hospital Anxiety and Depression scale (HAD)
was used to evaluate psychological consequences of LBP.

Sick leaves due to LBP were self-reported by the patients.

1.5. Statistical analysis

Mean value and standard deviation were calculated for quantitative variables. The chi² test was used to compare qualitative variables and the T test for quantitative variables. Non-parametric tests for paired variables (chi² and Wilcoxon test) were used to compare the pre- and post-treatment values of qualitative variables. Pre- and post-treatment c quantitative variables were compared by the student t test.

Analysis of the predictive factors of return to work was performed by univariate analysis for the 61 patients in whom the work status at 2 years follow-up was available. We tested the following variables: gender, age, work constraints, previous spinal surgery, being on sick leave at the beginning of the program, having been on sick leave for over 1 year during the past 2 years, LBP due to industrial accident, Dallas score, HAD score, VAS pain score, physical criteria (FFT, Ito and Sorensen scores), self-assessment of improved physical condition at the end of the program, self-assessment of ability to return to work; self-assessment of ability to resume leisure and sports activities. Multivariate analysis was then performed using logistic regression modelling [7].

Quantitative variables were dichotomised as above or below the median value in order to obtain balanced classes. The following variables: gender, sick leave, implementation of the ergonomic intervention were forced into the logistic regression model. All variables which were related to the work status in the univariate analysis with a correlation above 20% were included in the multivariate analysis. Statistical significance was set at 5%.

Analysis were performed on the SPSS software for Windows version 13.0.

1.6. Results

At 1 year, 83 patients completed the evaluation; one had not completed the program; two refused to come back for evaluation and one was lost to follow-up (Fig. 1).

At 2 years, 81 patients (94%) completed the evaluation (one patient refused and one was lost to follow-up).

Twenty were excluded from further analysis for the following reasons:

- 11 had stopped working for medical reasons unrelated to LBP;
- four had undergone surgery (one spinal cord injury, one intestinal occlusion, two knee sprains);
- four were hospitalized for psychiatric reasons;
- three were off work due to other medical conditions;
- nine had stopped working for economic reasons:
 - one female patient stopped work after her husband had a promotion,
 - three patients were fired for economic reasons,
 - five patients followed occupational training programs.

The analysis of the factors which were predictive of the work status was conducted in the 61 remaining patients (70%).

There was no significant difference in gender, age, duration of sick leave before treatment, nor in any of the outcome measures between the 21 patients excluded and the 61 patients included in the final analysis.

Forty-four patients over 61 were males; the mean age was 40.8 years. Eighty-four percent were employed in economic sectors characterized by heavy work constraints. The mean duration of sick leaves in the 2 years prior to the program was 329 ± 179 days. Seventy-two percent were on sick leave when included in the program.

Ergonomic intervention was conducted in 41/61 (67%).

At 2 years, 48 (79%) completed all tests (physical items, self-questionnaires, data on work status). The 13 others completed a telephone interview and gave information concerning their work status. Seven of them also completed the self-assessment of physical condition, of the ability to work and of the ability to resume sports activities.

Tables 1 and 2 summarize the physical data.

All outcome measures remain significantly better at 2 years follow-up than before treatment (p < 0.01) (Table 1).
to work. Fig. 2 shows the decrease of the items “improved physical condition” and “physical activity” at 1 year whilst 80% still “feel able to work” at 2 years.

1.6.1. Results of the physical tests

All outcome measures remain significantly better at 2 years compared to pre-treatment values ($p < 10^{-3}$). The decrease between the values at 1 and 2 years is not significative in contrast, which what had been found between the end of the program and 6 months [6] (Table 2).

1.6.2. Work status at 2 years

Seventeen over 61 (28%) are at work at the beginning of the program, 52/61 (85%) at 1 year and 48/61 (78%) at 2 years. Among the 13 patients off work, four are on disability pension, two are on sick leave after lumbar surgery, one has lost his job because of his disability and six are on sick leave for LBP (Table 3).

Among the patients who are at work, five patients have gone back to a different job immediately after the program and 12 others have changed their job in the two following years. In all cases the new job is physically less demanding. Adaptations in the work are three times more frequent at 1 year than at the end of the program. Fifteen patients work half time at the end of the program and this remains stable at 2 years.

Table 2

<table>
<thead>
<tr>
<th>Physical criteria: evolution of the mean values between the beginning of the program and 2 years.</th>
<th>Beginning of the program T1</th>
<th>End of the program T5</th>
<th>1 year T12</th>
<th>2 years T24</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Mean (S.D.)</td>
<td>n</td>
<td>Mean (S.D.)</td>
<td>n</td>
</tr>
<tr>
<td>FFT (cm)</td>
<td>61</td>
<td>19.51 (11.0)</td>
<td>61</td>
<td>0.71 (13.3)</td>
</tr>
<tr>
<td>EXT (sec)</td>
<td>61</td>
<td>71.32 (53.5)</td>
<td>61</td>
<td>185 (79.4)</td>
</tr>
<tr>
<td>FLEX (sec)</td>
<td>61</td>
<td>73 (55.8)</td>
<td>61</td>
<td>163.34 (73.6)</td>
</tr>
<tr>
<td>Squats(kW)</td>
<td>61</td>
<td>287.48 (137.5)</td>
<td>61</td>
<td>462.47 (170.0)</td>
</tr>
<tr>
<td>PILE (body weight %)</td>
<td>61</td>
<td>26.77 (11.9)</td>
<td>59</td>
<td>37.57 (12.1)</td>
</tr>
<tr>
<td>Cyclo (kJ)</td>
<td>61</td>
<td>71.46 (35.3)</td>
<td>59</td>
<td>110.23 (52.1)</td>
</tr>
</tbody>
</table>

n: number of patients; S.D.: standard deviation; FFT: finger to floor distance; EXT: duration of isometric contraction of the trunk extensors; FLEX: duration of isometric contraction of the trunk flexors; Squats: power developed by the lower limbs; PILE: lifting task expressed as % of the body weight; Cyclo: power developed on the cycloergometer.
1.6.3. Evolution of sick leaves

The mean duration of sick leaves decreases by 60% in the 2 years following the program, compared to before the program (128 ± 200 days versus 329 days ± 179 days).

Fourteen patients (23%) have been on sick leave at least 6 months in the two following years. The number of sick leaves is not significantly different during the second post-program year, compared to the first (Fig. 3) (Tables 4 and 5).

We analyzed the factors associated with the work status at 2 years and compared them to what had been found at 1 year. This analysis was performed in the 61 patients in which all data were available. Forty-eight of them were at work. The factors were compared to those identified at 1 year (83 patients, 62 of them were at work).

PILE above the median value at the beginning of the program (PILE T1) is the only factor significantly (p < 0.03) correlated with the work status at 1 year when univariate analysis is performed. Multivariate analysis reveals a significant positive correlation of PILE T1 and a significant negative correlation of the depression subscore of the HAD scale.

1.7. Discussion

This study shows that over 78% of the patients included in the program remain at work at 1 year. The proportion was of 72% at 1 year. This is in agreement with the results of the meta-analyses performed by Hayden et al. [20], by Kool et al. [29], and with the studies by Friedrich et al. [16] and Verfaille et al. [53]. In agreement with these previous data, our results show the efficiency of such programs, on the medium- and long-term. Despite overall satisfactory results, 13% of the patients remain on sick leave for LBP or lumbar surgery. When patients on disability pension are included in the count, the proportion of patients off work for over 6 months reaches 23%. Proctor et al. [47] also report that a small proportion of patients remain in unsatisfactory situations despite selection criteria at the entry of the program.

The main methodological difficulty is the analysis of the status of patients who do not work but in which the reason for the cessation of activity is not LBP. We chose to exclude them from the final analysis [53]. We also chose to exclude the five patients who were re-training because the delay and duration of this retraining was very variable. The sub-group of patients excluded from the final analysis was comparable to the general population for all criteria. This procedure reduces the power of the study and possibly over-estimates the decrease in the number of sick leaves.
The only factor correlated with the number of sick leaves is the performance on the lifting task before the program. This has not, to our knowledge, been previously reported and deserves confirmation. Factors which have been previously reported to be correlated such as: “feels able to work”, “has resumed physical activities”, or Dallas or HAD scores above the median value do not, in our study, reach significance. The increase in the physical or psychological criteria during the program does not appear to be correlated with the work status at 2 years either. Ergonomic intervention is not significantly correlated to the work stats at 2 years and we found no clear relation between ergonomic intervention and effective changes in the work environment. Although ergonomic intervention has been described as one of the tools to promote return to work, this does not appear in this study [3]. This may be in part due to the difficulties in standardising this intervention. The possibility of such an intervention heavily depends on work organisation characteristics which probably in themselves influence return to work and this is a major methodological issue.

After decreasing in the 6 months following the program, physical criteria remain stable and remain better at 2 years than before the program. This is achieved despite the fact that more than half of the patients do not perform physical activities. The absence of correlation between pursued physical activity and the presence at work has already been described by other authors [53].

The determination of risk factors for persisting LBP and persisting work disability is extremely difficult [32] even when meta-analyses are performed [14]. This discrepancy is in part due to the role of other factors. Kool et al. [29] stress the importance of coping strategies developed during such programs. Recently, Mc Geary et al. [43] highlight the role of pain intensity and reports that high pain intensities before the program are often associated with bad outcomes both in LBP and other musculoskeletal diseases. The debate on the respective influences of depression and anxiety and of fear and believes remains open [10,11,45,54].

For Wessels [55] disabilities play a greater part in return to work than impairments; but Chambon et al. [9] and Smeets et al. [50] report a decrease of $V_{O_{2max}}$ values in chronic LBP.

Sullivan et al. [52] highlight the importance of the work environment in addition to the psychosocial context in determining the probability to return to work. This could be a major issue and lead to a double approach combining individual components but also the reality of the work context as proposed in the predictive factors developed by Proctor et al. [47,48]. Over-reaction creates disability more surely than purely physical impairments as described by Genêt et al. [18]. This environmental approach of the LBP worker has been particularly developed by Loisel and justifies the concept of “therapeutic return to work” [36]. In a similar approach, Linton et al. include the family and relatives of the patients in the context [35].

In chronic LBP, networking is necessary and should include rehabilitation facilities, occupational specialists, and the work environment. This allows communication of the conclusions of the program and progressive return to work and requires that all information can be shared between the patient, relatives, service providers, healthcare facilities as in some of the Canadian models [37,13].

1.8. Conclusion

Despite the methodological difficulties, these results show that the benefit of a functional restoration program remains significant at 2 years follow-up in terms or reduction of sick leaves.

Determining factors correlated with the return to work is difficult, in part because of the lack of power of our study but also because many different factors coexist, are interdependent, none of them being in itself determinant.

2. Version française

Le problème du retour à l’emploi des lombalgies chroniques demeure un problème de santé publique de premier ordre comme en témoigne le récent rapport du Centre fédéral d’expertise des soins de santé belge, KCE [44].

La lombalgie chronique est fréquente : 58 % des salariés de Pays-de-la-Loire disent avoir souffert de lombalgies dans l’année et 7 % de façon quotidienne d’après une étude épidémiologique du réseau de surveillance des TMS [49]. Ses conséquences sociales sont mises en lumière par l’équipe d’Annette Leclerc dans un récent rapport de l’Inserm [34]. De plus, la caractéristique essentielle de ce véritable fléau est la survenue d’incapacités prolongées dans un nombre réduit de cas comme l’illustrait déjà le rapport Spitzer et al., il y a 20 ans [51].

Au cours des deux dernières décennies, plusieurs types d’approche ont été développés. De nombreux travaux ont analysé les facteurs de risque de passage à la chronicité et proposé des stratégies thérapeutiques. Le caractère central des éléments psychosociaux, notamment des peurs et croyances relatives au mouvement, a été mis en évidence. Les stratégies d’information thérapeutique ont été de façon croissante ciblée sur ces aspects [22,30]. Des programmes de traitement des patients lombalgies chroniques ont été développés [27,38]. La majorité reposent sur le concept de déconditionnement
physique et psychosocial et proposent des interventions multidisciplinaires dont l’objectif est la reprise ou le maintien dans l’activité, notamment professionnelle. Les résultats immédiats de ces programmes sur les limitations des performances physiques initiales sont très significatifs [4,6,17,19,23,24,26,28,37,46]. L’évaluation de ces programmes, notamment dans son versant médicoéconomique, nécessite aussi un suivi, permettant d’analyser le parcours, en particulier professionnel au long cours. Ces données restent actuellement relativement peu disponibles ; la plupart de ces études disposent d’un an de recul et rares sont celles de plus d’un an [2,20,26,29,32,33,40,41,52].

Plusieurs cohortes de patients ont été suivies dans la région de Pays-de-la-Loire depuis 2000 [6,26]. Les résultats à un an d’une cohorte de 87 patients [6] montraient une diminution de 60 % de la durée des arrêts de travail et un maintien dans l’emploi pour 72 %. L’objectif de la présente étude est d’analyser l’évolution de ces résultats au cours de la deuxième année et de tenter de dégager des facteurs prédictifs de retour ou de maintien dans l’emploi de cette population à haut risque d’exclusion.

2.2. Patients et méthodes

2.2.1. Population

Il s’agit d’une étude prospective ouverte, incluant 87 patients adressés à une consultation pluridisciplinaire entre 1998 et 2001. Les critères d’inclusion étaient :

- un âge compris entre 18 et 53 ans ;
- lombalgie ou lomboradiculalgie chronique selon les critères de l’Anaes [1] ;
- salarié titulaire d’un contrat de travail ;
- être en arrêt de travail ou avoir totalisé plus de six mois d’arrêt de travail au cours des deux années précédentes.

Les critères d’exclusion étaient :

- l’existence d’une lombalgie secondaire ;
- l’existence de troubles articulaires ou neurologiques ne permettant pas le programme de réadaptation à l’effort ;
- une désadaptation cardiaque à l’effort sur test d’effort sur cycloergomètre préalable ;
- l’existence de troubles psychiatriques ne permettant pas une inclusion dans un groupe.

2.2.2. Intervention

2.2.3. Évaluation

Le protocole d’évaluation à deux ans est identique à celui utilisé à un an [6]. La souplesse globale est évaluée par la distance doigts-sol, la force des fléchisseurs et extenseurs du rachis par les tests isométriques de Ito et al. [25] et de Sorensen [5,12], les capacités de port de charge par le test de Progression Isoinertial Lifting Evaluation (PILE) [42], la qualité de vie par l’autoquestionnaire de Dallas [40], les limitations d’activité par l’autoquestionnaire de Québec [31], le retentissement psychologique par l’Hospital Anxiety and Depression scale (HAD) [56].

Les arrêts de travail dont le motif principal est la lombalgie sont mesurés à partir des déclarations du patient.

2.2.4. Analyse statistique des données

Les données quantitatives sont présentées sous forme de moyennes et d’écart-types (S.D.). Les tests statistiques utilisés pour les données indépendantes sont le calcul du Khi² pour les variables qualitatives et l’analyse de variance ou le test t de Student pour les variables quantitatives. Les comparaisons avant après sont réalisées à l’aide de tests non paramétriques appariés : test de Wilcoxon et calcul du Khi² selon la méthode de Mc Némà pour les variables qualitatives, d’une part, et test de Student pour les variables quantitatives, d’autre part.

Une analyse univariée des facteurs prédictifs de la reprise du travail 24 mois après la rééducation a d’abord été réalisée sur l’échantillon de 61 patients dont le statut de l’emploi a été obtenu à 24 mois. Les variables testées sont le sexe, l’âge, la notion de travail pénible, les antécédents chirurgicaux rachiadiens, le fait d’être en arrêt au début de la session de rééducation, le fait d’être en régime « accident de travail », une durée d’arrêt de travail les deux ans qui précèdent le stage au moins égale ou supérieure à un an, les scores de Dallas, les échelles d’anxiété–dépression, l’autoévaluation de la douleur, les valeurs des tests physiques et l’autoévaluation d’une forme physique améliorée (FPA), de la reprise d’une activité sportive de loisir (RASL), de la capacité à travailler (SSCT) en début et/ou en fin de stage.

Une analyse multivariée a été ensuite effectuée à l’aide d’un modèle de régression logistique binaire pas à pas descendant [7].

Pour cela, les paramètres quantitatifs physiques, psychologiques et de qualité de vie ont été préalablement dichotomisés par rapport à leur valeur médiane afin d’obtenir des classes équilibrées.

Les variables sexe, durée d’arrêt de travail pour lombalgie au cours des deux ans précédant le stage, réalisation complète du
programme de rééducation avec action ergonomique ont été forçées dans le modèle logistique. Toutes les variables liées à celle de la « présence au travail » à 24 mois au seuil de 20 % lors de l’analyse univariée ont été inclus dans le modèle logistique dont le seuil de significativité a été fixé à 5 %.

Les analyses ont été réalisées à l’aide du logiciel SPSS pour Windows version 13.0.

2.3. Résultats

À un an, l’évaluation a porté sur 83 cas, car un cas n’a pas achevé le programme, deux ont refusé d’être suivis, un a été perdu réellement de vue (Fig. 1).

À deux ans, un nouveau refus de suivi et un perdu de vue ramènent le total à 81 cas.

Ces 81 cas ont pu être analysés, ce qui représente plus de 94 % de suivi à deux ans sur les 86 qui ont fini le stage. Toutefois, parmi eux, 20 sont sortis de l’étude pour de multiples raisons :

- 11 le sont car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique ;
- quatre opérés de cause autre que le rachis (une paraplégie traumatique, une occlusion intestinale, deux entorses de genou) ;
- quatre hospitalisés pour des décompensations psychiatriques et/ou alcooliques ;
- trois en arrêt de cause médicale non lombalgique : un syndrome du défilé cervicothoracocubrachial, une cause cardiovasculaire, une pelvispondylite rhumatismale ;
- neuf le sont, car en arrêt professionnel pour des motifs distincts de la lombalgie chronique.

L’étude permet donc d’analyser la présence au travail, à deux ans, de 61 patients soit 70 %.

Il n’existe pas de différence significative concernant les variables sociodémographiques, les durées d’arrêt de travail avant reconditionnement, les performances physiques et les valeurs des autoquestionnaires en début et fin de programme entre les 26 patients exclus ou sortis de l’étude à deux ans et les 61 patients analysés.

Ces 61 patients se répartissent ainsi : 44 hommes et 17 femmes d’âge moyen 40,8 ans.

Leurs secteurs d’activité sont à contrainte physique élevée représentée par l’industrie et le bâtiment pour 84 % d’entre eux.

La moyenne de la durée des arrêts de travail dans les deux ans précédant l’inclusion est de 329 jours (S.D. : 179 jours). Quarante-quatre (72 %) sont en arrêt avant le début du stage.

Tableau 1
Évolution des valeurs moyennes des paramètres de douleur, d’index de qualité de vie et d’autoquestionnaire d’anxiété–dépression des 61 patients lombalgiques.

<table>
<thead>
<tr>
<th></th>
<th>T1 semaine</th>
<th>T5semaines</th>
<th>T12mois</th>
<th>T24mois</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>Moyenne (S.D.)</td>
<td>n</td>
<td>Moyenne (S.D.)</td>
</tr>
<tr>
<td>EVA</td>
<td>61</td>
<td>4,85 (2,0)</td>
<td>61</td>
<td>3,35 (2,4)</td>
</tr>
<tr>
<td>Québec</td>
<td>61</td>
<td>31,62 (15,3)</td>
<td>61</td>
<td>18,82 (15,3)</td>
</tr>
<tr>
<td>Dallas</td>
<td>61</td>
<td>167,62 (67)</td>
<td>61</td>
<td>88,82 (69)</td>
</tr>
<tr>
<td>AVI</td>
<td>61</td>
<td>49,41 (15,8)</td>
<td>61</td>
<td>29,23 (20,3)</td>
</tr>
<tr>
<td>T/L</td>
<td>61</td>
<td>56,08 (21,4)</td>
<td>61</td>
<td>29,43 (20,7)</td>
</tr>
<tr>
<td>A/D</td>
<td>61</td>
<td>36,5 (22,0)</td>
<td>61</td>
<td>17,58 (18,3)</td>
</tr>
<tr>
<td>Soc.</td>
<td>61</td>
<td>27,60 (20,9)</td>
<td>61</td>
<td>13,08 (18,3)</td>
</tr>
<tr>
<td>HAD</td>
<td>61</td>
<td>16,02 (7,2)</td>
<td>61</td>
<td>10,64 (7,4)</td>
</tr>
<tr>
<td>HAD anx</td>
<td>61</td>
<td>9,79 (4,1)</td>
<td>61</td>
<td>7,31 (4,5)</td>
</tr>
<tr>
<td>HAD dép</td>
<td>61</td>
<td>6,59 (3,7)</td>
<td>61</td>
<td>3,66 (3,4)</td>
</tr>
</tbody>
</table>

EVA : échelle visuelle analogique mesurant la douleur sur 10 cm ; sous-classes du Dallas : AVI : activités de la vie quotidienne ; T/L : travail, loisirs ; A/D : anxiété dépression ; Soc. : sociabilité ; HAD : autoquestionnaire d’anxiété–dépression.
Moins de la moitié de la cohorte poursuit une activité physique et sportive de loisir, deux ans après le stage. Environ deux tiers trouvent leur forme physique améliorée à deux ans, malgré cet abandon de la pratique sportive de loisir et, surtout, cela n’empêche pas les trois quarts de se dire capables de travailler.

La Fig. 2 montre la chute des autoquestionnaires FPA et RASL dès la première année alors que le SSCT reste au-dessus des 80 % de oui à deux ans.

2.3.1. Résultats des tests physiques

Il restent significativement améliorés à deux ans par rapport à ceux du début de stage (\(p < 10^{-3} \)), sans une dégradation significative entre les résultats à un an et à deux ans, au contraire de ce que nous avions noté entre la fin du stage et à six mois, dans la précédente étude [6] (Tableau 2).

2.3.2. Présence au travail à deux ans

Dix-sept sur 61 (28 %) sont au travail au début du stage, 52/61 (85 %) le sont à un an et 48/61 (78 %) à deux ans. Parmi les 13 absents du travail à deux ans : quatre sont en invalidité, deux en arrêt pour lombalgie chronique (Tableau 3). Cinq patients reprennent leur travail sur un poste différent de celui antérieurement occupé et 14 en plus feront de même au cours des deux ans. Ces changements de poste se font sur des postes à moindre contrainte physique.

La présence à un poste adapté concerne trois fois plus de cas à un an qu’à la fin du stage : 12 contre quatre. Si, à la fin du stage, le retour au travail se fait à mi-temps pour 15 personnes, le nombre des travailleurs à mi-temps se stabilise ensuite à deux.

2.3.3. Évolution des durées d’arrêt de travail

La durée moyenne d’arrêts de travail au terme de ces deux années est de 128 ± 200 jours versus 329 ± 179 jours dans les deux années précédentes, soit une diminution de 60 % environ (Fig. 3).

Quatorze (23 %) ont eu au moins six mois ou plus d’arrêt de travail dans les deux ans qui suivent, soit 23 % de l’ensemble (Fig. 3). Il n’y a pas de différence significative entre la durée
d’arrêt de travail durant la seconde année comparée à la première.

À partir des 61 cas analysables, nous avons cherché les facteurs associés à la présence au travail à deux ans de la fin du stage des 48 cas. Nous les avons comparés à ceux retenus à un an à partir des 62 sur 83 cas (Tableau 4).

Mis à part un pourcentage de poids de corps soulevé au PILE supérieur à la valeur médiane à T1 (p < 0,03 %), aucun facteur n’est à p < 0,05 parmi les 15 facteurs retenus à deux ans. L’analyse multivariée retient un facteur physique, la valeur du pourcentage de poids de corps soulevé lors de la mesure du PILE à T1 et le sous-score de dépression de l’HAD à T1 (Tableau 5).

Plus la charge soulevée à T1 est supérieure à la valeur médiane et plus la probabilité d’être au travail à deux ans est grande et a contrario, plus le score de dépression de l’HAD est élevé au dessus des valeurs médianes à T1 et plus la probabilité est grande d’une absence au travail à deux ans.

2.4. Discussion

Cette étude nous permet de confirmer un taux de présence au travail de plus de 78 % à deux ans. Il était de 72 % à un an. En cela, elle va dans le sens de la méta-analyse de Hayden et al. [20], de celle de Kool et al. [29], de l’étude de Friedrich et al. [16] et de Verfaille et al. [53]. Comme ces travaux, notre étude témoigne de l’efficacité de ces programmes à moyen et long terme. Toutefois, une fraction de huit sur 61 cas reste en arrêt professionnel prolongé à la suite d’une intervention sur le rachis ou du fait de la lombalgie chronique et consommatrice de soins, soit environ 13 % de la cohorte étudiée. Si on y associe un chômage prolongé suite à une inaptitude et des mises en invalidité, la durée effective d’arrêt de travail est supérieure à six mois pour 23 % des patients. Proctor et al. [47] soulignent la persistance d’un petit nombre de patients qui restent en échec même dans ces cohortes présélectionnées.

La principale difficulté méthodologique est l’analyse des patients qui ne sont pas au travail à deux ans mais dont la cause d’arrêt n’est pas la lombalgie. Nous avons choisi de les exclure de la population étudiée, afin de bien relier un arrêt de travail à la lombalgie [53]. La grande variabilité du délai d’acquisition du stage professionnel, de sa durée, est une source de biais dans l’interprétation de la présence au travail des cinq cas en formation professionnelle et une raison de les sortir aussi de l’étude. Tous étaient comparables aux autres patients lors de l’inclusion. Ce choix réduit la puissance de l’étude quant à l’analyse de facteurs prédicatifs en réduisant l’effectif et majore possiblement l’effet en terme de réduction des jours d’arrêt de travail.
Tableau 5
Facteurs associés à la présence au travail à deux ans des patients lombalgiques.

<table>
<thead>
<tr>
<th>Variables</th>
<th>OR</th>
<th>IC95 %</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILE %pc T1 ≥ 50 %</td>
<td>8,2</td>
<td>1,5</td>
<td>0,015</td>
</tr>
<tr>
<td>HADd T1 ≥ 50 %</td>
<td>0,2</td>
<td>0,0</td>
<td>0,052</td>
</tr>
</tbody>
</table>

Regression logistique pas à pas descendante. Variables initialement inclues dans le modèle: sexe, action ergonomique, durée des arrêts de travail supérieure ou égale à un an dans les deux ans précédents, « se sent capable de travailler T5 », « se sent capable de reprendre ses activités physiques de loisirs T5 », A/D Dallas T1 ≥ 50 % ; A/D Dallas T5 ≥ 50 % ; PILE %pcT1 ≥ 50 % ; HADd T1 ≥ 50 % ; HADd T5 ≥ 50 %.

Le pourcentage de poids de corps soulevé avant le programme est alors le seul facteur physique influant significativement sur le nombre de jours d’arrêt de travail. Ce résultat diffère des données de la littérature et mériterait d’être confirmé. Les facteurs plus habituels : « se sent capable de travailler », « reprise d’activités sportives de loisir », score d’anxiété–dépression supérieur à la valeur médiane au Dallas et à l’HAD n’atteignent pas la significativité. Il en est de même pour la relation entre gains sur les paramètres physiques et psychologiques entre début et fin de stage et présence au travail à deux ans ou durée d’arrêt de travail.

L’intervention ergonomique en entreprise n’est pas non plus significativement liée à la présence au travail à deux ans. Nous retrouvions déjà ce résultat à un an. De même, nous ne parvenons pas statistiquement à la lier aux adaptations ou aux changements de poste, sur ces deux ans. Ainsi, l’effet de l’action ergonomique ne se dégage pas, alors que, pour beaucoup, elle fait partie des moyens de retour précoce au travail [3,15]. Les difficultés pour la standardiser et le fait que sa faisabilité dépende de contextes de travail pouvant influer par eux-mêmes sur le résultat sont des difficultés méthodologiques majeures.

Les valeurs physiques fléchissent dès le sixième mois, mais ensuite, se maintiennent et restent meilleures à deux ans qu’en début de stage. Pourtant, plus de la moitié des cas ne pratiquent plus de sport de loisir à deux ans. Cela n’a pas de conséquence sur la présence au travail et confirme, comme dans d’autres études [53] l’absence de relation directe entre la poursuite d’un entretien physique chez ces personnes, d’une part, et la conviction clairement exprimée de pouvoir travailler et le maintien dans l’emploi, d’autre part.

La détermination des facteurs de risque de non retour au travail et d’entretien de la chronicité douloureuse est extrêmement difficile à conduire [21,32] y compris dans des méta-analyses [14]. D’autres facteurs que physiques sont mis en lumiére et permettent de comprendre cette apparente discordance [8,39]. Kool et al. [29] insistent sur les stratégies de coping développées dans ce type de démarche. Récemment, Mc Geary et al. [43] insistent sur la catégorisation des intensités de douleurs tant dans la lombalgie chronique que dans les autres TMS en mettant en évidence que les plus hautes intensités douloureuses avant le stage sont le plus souvent associées aux échec. L’importance respective des facteurs de dépression et d’anxiété et celle des facteurs peurs et croyances reste également sujette à débats [10,11,45,54].

Pour Wessels et al. [55], c’est plus l’incapacité que les déficiences proprement physiques qui pénalisent le retour : cela même si, comme Chambon et al. [9] et Smeets et al. [50], on peut mettre en évidence dans ces populations douloureuses chroniques des V$_{O2max}$ diminuées.

Sullivan et al. [52] mettent en valeur le poids du contexte professionnel du travailleur, en plus de son contexte psychosocial, dans la probabilité de retour au travail. Il en fait une donnée fondamentale qui impose dans ce type de démarche, les deux approches : celles des composantes individuelles mais aussi celles du vécu du travail et de la réalité de l’entreprise évoqués dans les facteurs prédictifs de Proctor et al. [47,48]. La dramatisation de la situation est plus incapacitante que les déficits proprement physiques comme le notent Genêt et al. [18]. Cette approche globale du travailleur douloureux chronique est particulièrement développée par P. Loisel et justifie la notion de retour thérapeutique au travail [36]. Linton et al. développent aussi les mêmes orientations en incluant aussi la famille et l’entourage du lombalgique [35].

Une fois la chronicité présente, le travail en réseau est incontournable avec une bonne imbrication des médecins du travail, des rééducateurs comme du monde de l’entreprise. Sont souvent proposés, en effet, une mise en commun des enseignements de la réadaptation, quelle que soit la nature du programme, et le retour progressif en entreprise.

Elle implique le partage d’informations entre organismes de prise en charge public et privé, travailleur et sa famille et les soignants comme dans les modèles canadiens [37,13].

2.4.1. En conclusion
Le maintien a deux ans du bénéfice en termes de réduction des arrêts de travail d’un programme de réadaptation fonctionnelle du rachis nous semble démontré, malgré les difficultés méthodologique du suivi à long terme.

La recherche de facteurs prédictifs du retour à l’emploi est plus difficile, car les limites méthodologiques affaiblissent la puissance, et, surtout, parce que les facteurs en cause sont très nombreux, non indépendants et qu’aucun n’est à lui seul déterminant.

References

